Показатели анализа рядов динамики

формула2

Что такое ряд динамики в статистике, и какие они бывают, мы рассмотрели в первой части этой темы. Теперь поговорим об анализе рядов динамики. Как уже отмечалось, ряды динамики характеризуют развитие явление во времени, а это развитие подлежит изучению. Ведь статистику интересует, как это явление развивается, какие есть тенденции (тренды) в развитии явления. Или наоборот тенденций нет.

Ряды динамики

Именно для целей изучения динамики или скорости изменений во временных периодах и используются показатели анализа рядов динамики.

Но прежде чем мы перейдем к самим показателям и формулам их расчета необходимо уточнить важнейший момент.

Анализ рядов динамики

Дело в том что сам анализ может проводиться двумя способами, в зависимости от того как и с чем мы будем проводить сравнение уровней ряда. Если мы хотим сравнить с каким-то одним данным это один способ, а если с непосредственно предшествующим, то это уже другой способ расчета.

Как правило, расчет проводится сразу и тем и другим способом, если мы говорим о полноценном исследовании.

  1. Расчет показателей анализа рядов динамики С ПОСТОЯННОЙ БАЗОЙ СРАВНЕНИЯ (БАЗИСНЫЕ показатели) – каждый уровень рядя сравнивается с одним и тем же уровнем выбранным за базу сравнения.

Например: база сравнение 2005 год, а уровни, начиная с 2006 по 2009, тогда получаем следующую последовательность расчетов уровень 2006 года с уровнем 2005 года, 2007 – с 2005, 2008 – с 2005 и 2009 – с 2005.

  1. Расчет показателей анализа рядов динамики С ПЕРЕМЕННОЙ БАЗОЙ СРАВНЕНИЯ (ЦЕПНЫЕ показатели) – в данном случае каждый уровень ряда сравнивается с тем который стоит перед ним, получается такое цепное сравнение или цепь расчетов взаимно перетекающих друг в друга, поэтому и второе название способа ЦЕПНЫЕ показатели анализа рядов динамики.

Например: имеем уровни начиная с 2005 по 2009 годы, тогда получаем следующую последовательность расчетов уровень 2006 года с уровнем 2005 года, 2007 – с 2006, 2008 – с 2007 и 2009 – с 2008.

Вот такие нехитрые расчеты. А теперь можем перейти к самим показателям анализа. Следует сказать, что эти показатели условно можно разделить на две группы:

— простые показатели анализа рядов динамики рассчитываются по каждому уровню ряда;

— обобщающие или средние показатели анализа рядов динамики они рассчитываются для всего ряда в целом, собственно как и любые средние величины.

А вот самих показателей всего пять.

ряды динамики показатели

  1. Абсолютный прирост – рассчитывается путем вычитания из текущего уровня базисного или предшествующего уровня, то есть простое математическое вычитание. В отличие от всех других показателей абсолютный прирост имеет те же единицы измерения, что и исходный уровень ряда. Может получиться отрицательным.
  2. Коэффициент роста – рассчитывается делением текущего уровня на базисный или предшествующий уровень. Показывает во сколько раз данный уровень больше или меньше базисного. Поскольку это относительная величина, то наименование у коэффициента роста нет.
  3. Темп роста – рассчитывается умножением коэффициента роста на 100%. Показывает, сколько процентов данный уровень составляет по отношению к базисному. Выражается в процентах.
  4. Темп прироста – рассчитывается вычитанием из темпа роста 100%. Показывает на сколько процентов данный уровень больше или меньше базисного. Выражается в процентах. Может получиться отрицательным.
  5. Абсолютное значение одного процента прироста – рассчитывается из имеющихся уже абсолютного прироста и темпа прироста путем деления первого на второй. Получаем как раз размер 1 % прироста, но в абсолютно выражении. Следует сказать, что данный показатель носит больше статистический характер и в широкой практике используется нечасто.

Формулы для анализа рядов динамики

Ниже в сводной таблице представим все формулы простых показателей анализа рядов динамики с постоянной и переменной базой сравнения.

Ряды динамики1

Обобщающие показатели анализа рядов динамики имеют практически похожие названия, и выполняют роль средневзвешенных показателей, для упрощения анализа. Их также пять:

  1. Средний абсолютный прирост.
  2. Средний коэффициент роста – рассчитывается по формуле средней геометрической.
  3. Средний темп роста.
  4. Средний темп прироста.
  5. Среднее значение одного процента прироста.

Формулы для расчета вышеуказанных показателей сведем в общую таблицу. Также для полноты картины приведем и формулы расчета средних уровней, которые были разобраны в первой части.

Ряды динамики3Задание. Для закрепления прочитанного материала попытайтесь решить вот такую задачу. По представленным данным проведи все возможные расчеты.

Год Выпуск продукции, млн. руб.
2010 219,7
2011 221,4
2012 234,2
2013 254,1
2014 241,8
Итого 1171,2

А для простоты можно воспользоваться вот такой таблицей для занесения итоговых расчетов.

Год y Δ К Тр Тпр α
Б Ц Б Ц Б Ц Б Ц Б Ц
2010 219,7
2011 221,4
2012 234,2
2013 254,1
2014 241,8

Если вам что-то не понятно, вы всегда можете спросить в комментариях или написать в нашу группу вконтакте! А также вы можете выслать туда решение, чтобы мы проверили его!

Может еще поучимся? Загляни сюда!

Вы можете оставить комментарий, или ссылку на Ваш сайт.

Оставить комментарий